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Using the canonical quantum theory apply to spherically symmetric pure gravitational
systems, we present the study of the closed Friedmann-Robertson-Walker (FRW) cos-
mological model filled with pressureless matter (dust) content as a toy model. The
Wheeler-DeWitt equation is view as the Schrödinger equation for the linear harmonic
oscillator with energy E. We show that such type of universe has a quantized masses
of the order of the Planck mass and harmonic oscillator wave functions, where a dual
symmetry emerge among the quantum parameters.
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1. INTRODUCTION

The absence of a fundamental understanding of physics at very high energies
and, in particular, in the absence of a consistent quantum theory of gravity, there
is no hope, at present, to meet an understanding of the quantum origin of the
Universe in a definitive way. However, it appears desirable to develop highly and
simplified, but consistent toy models, which contain as many as possible of those
features which are believed will be present in a future complete quantum theory
of gravity.

In order to give one possible mechanism for to find certain quantization rules
for the parameters that describes our universe, we present the simpler approach,
where we view the Wheeler-DeWitt equation at energy zero, obtained with the
canonical procedure quantization for a closed FRW cosmological model filled
with pressureless matter (dust) content, like the Schrödinger equation for a linear
harmonic oscillator at energy E. This energy is associated with the mass parameter
quantization, and such type of universe has a quantized masses of the order of
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the Planck mass and harmonic oscillator wave functions with all properties in the
usual sense.

Some time ago, Rosen (1993) used the equations of General Relativity for
the case of a closed homogeneous isotropic universe, the equation obtained was
like that for the s-state of a hidrogen-like atom, and was able to obtain the relation
mn = √

nπMpl for the quantization of the mass spectrum.
But, the main work in mass quantization rule, yield in the context of black

hole. In the framework of quantum gravity, black holes must be treated as quantum
objects. As such, they are characterized by quantum numbers like mass, electric
charge and angular momentum. For neutral, non-rotating Schwarzschild black
hole, the only quantum number which is left is the mass M. Classically, it is
related to the area A of the black hole horizon by the relation

A = 16πG2M2

c4
, (1)

where G is the Newtonian gravitational constant and c is the velocity of light in
vacuum. Important questions in black holes physics are what the spectrum of A
looks like and what the degeneracies of states are for a given values of A. Following
Eq. (1), any change in the mass parameter, imply one change in the area of the
black hole horizon.

The quantization of black holes was first proposed by Bekenstein some
years ago (Bekenstein, 1974) and recently Cavaglia et al. (1995, 1996), using an
hamiltonian formalism for black hole, develop a canonical formalism in the radial
variable r that is timelike inside the Schwarzschild horizon. The fundamental idea
of Bekenstein’s work is the remarkable observation that the horizon area of a
non-external black hole behaves as a classical adiabatic invariant. But in the spirit
of Ehrenfest principle (Ehrenfest, 1959), any classical adiabatic invariant should
correspond to a quantum entity with discrete spectrum. Bekenstein conjectured
that the horizon area of a quantum black hole should have a discrete spectrum
with uniformly spaced eigenvalues of the form

An = γ l2
pln, n = 1, 2, 3, (2)

where γ is a dimensionless constant to be determined, and �pl = (Gh̄
c3 )1/2 is the

Planck length. Bekenstein’s proposal implies that the energy eigenvalues corre-
sponding to the stationary states of the black holes are

En = σ
√

nEpl, n = 1, 2, . . . , Epl =
√

h̄c5

G
, (3)

where σ =
√

γ

16π
is the order of unity.

On the other hand, the quantum theory of gravity has given rather a few direct
physical predictions, perhaps the most important of them are the existence of the
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so called Hawking radiation emitted by the black hole (Hawking, 1975) and the
result given by Ashtekar, Rovelli and Smolin, which says that area is quantized
(Ashtekar et al., 1992)

Using a combination of thermodynamics and statistical physics arguments
it was found by Bekenstein and Mukhanov (1995), Mukhanov (1986) that the
dimensionless constant γ should be of the form γ = 4/n In α, where α is the
degeneracy factor of the nth area level. Recently, Hod (1998) employed Bohr’s
correspondence principle and found evidence in favor of the value α = 3n. An
analogous scenario appears in our model.

The quantum solution of the FRW cosmological model has been calculated
in many works (Padmanabhan, 1983a,b; Socorro, 2003; Socorro et al., 2003), but
not related to mass quantization.

The main purpose of this work is to obtain a time independent Schrödinger
equation for the case of the closed FRW model, where dust matter is filling the
universe, and obtain a mass spectrum for particular model. This is done following
the canonical quantization procedure by means of which, we show that our system
looks (with good approximation) like a linear quantum oscillator. Also, we obtain
the wave function of the FRW cosmological model, in this context. In the Mäkelä’s
work (Mäkelä, 1986), the author describe the gravitational degrees of freedom of
the Schwarzschild black hole by one free variable, introducing an equation which
suggest to be the time independent Schrödinger equation of the Schwarzschild
black hole that is similar to the one in our toy model.

The remainder of the paper is organized as follow. In Section II, using the
canonical formalism, we construct the corresponding Hamiltonian for the FRW
cosmological model, In Section III, the time independent Schrödinger equation
is obtained, promoving the classical Hamiltonian to operators, and applying it to
the wave function ψ, Ĥψ = 0. Here we introduce the quantization rules for the
energy, which depends on an integer number n. These quantization rules were
obtained using the creation-annihilation representation. In Section IV, the mass
spectrum is calculated. Finally, Section V is devoted for conclusions.

2. THE CANONICAL HAMILTONIAN

Observations shown that our universe is homogeneous ans isotropic with very
good approximation. Theoretically, we say that the cosmological principle is valid.
This homogeneous and isotropic space-time was originally studied by Friedmann,
Robertson, and Walker (FRW). The symmetry is encoded in the special form of
following line element

ds2 = −N2(t)dt2 + R2(t)

[
dr2

1 − κr2
+ r2d�2

]
(4)
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where R(t) is the scale factor, N (t) the lapse function, κ is the constant curvature,
taking the values 0, +1, −1 (flat, closed and open space, respectively).

In this work, we consider the classical lagrangian for a pure gravity system
and the corresponding term of matter content, perfect fluid with barotropic state
equation p = γρ, and cosmological term (Socorro, 2003; Socorro et al., 2003)

L = − c2R

2NG

(
dR

dt

)2

+ N
κc4

2G
R + N

c4


6G
R3 − NMγ c2R−3γ . (5)

following the canonical procedure, we obtaining the classical Hamiltonian,

H = − 1

2R
�2

R − N
κc4

2G
R − N

c4


6G
R3 + NMγ c2R−3γ . (6)

Considering the dust case γ = 0, κ = 1 and 
 = 0, we obtain

S =
∫ [

− c2

2GN
RṘ

2 + c4

2G
NR − NEs

]
dt. (7)

with Es = Mc2, where the parameter M corresponds to the mass parameter of the
closed Universe and dust scenario.

The action (7) preserves the invariance under time reparametrization

δt = a(t), (8)

if the transformations of N (t) and R(t) are defined as

δN = d(aN )

dt
, δR = a

dR

dt
. (9)

Note that if we take the lapse function as

N (t) = Ñ (t)R(t)
c2

MplG
, (10)

and substituting into (7), we have the following invariant action

S =
∫ [

−Mpl

2N
Ṙ2 + c6

2MplG2
ÑR2 − Ñ

Mc4

MplG
R

]
dt. (11)

Using the relations (9,10), it is easy to show that Ñ (t) transforms as

δÑ = d(aÑ )

dt
. (12)

Proceeding with the Hamiltonian analysis, we define the usual canonical mo-
mentum conjugate to the R(t) coordinate, PR = ∂L

∂R
and performing the Legendre



Mass Parameter Quantization in the FRW Cosmological Model 557

transformation, we can obtain the following canonical Hamiltonian

Hcan = Ñ

[
− P 2

R

2Mpl
− c6

2MplG2
R2 + M

Mpl

c4

G
R

]

= Ñ

[
− P 2

R

2Mpl
− Mpl

2
ω2

0

(
R − MG

c2

)2

+ M

2Mpl
Mc2

]
, (13)

where ω0 = c3

MplG
is the fundamental frequency of the system. This form of the

canonical Hamiltonian explains the fact, that the lapse function Ñ (t) is a Lagrange
multiplier, which enforces the first class constraint H = 0. The latter manifests
the invariance of the action under reparametrization transformations (8,9). Ac-
cording to the Dirac’s constraint quantization procedure, the wave function must
be annihilated by the operator version of the classical constraint, obtaining the
corresponding Wheeler-DeWitt equation at zero energy.

We transform Eq. (13) by defining

ξ = R − MG

c2
, (14)

thus its momentum conjugate becomes Pξ = PR and the constraint at the classical
level reads as follows

Hcan = ÑH = Ñ

[
− P 2

ξ

2Mpl
− Mpl

2
ω2

0ξ
2 + M

2Mpl
Mc2

]
= 0, (15)

that can also be rewritten as

P 2
ξ

2Mpl
+ MPlω

2
0

2
ξ 2 = M

Mpl

Mc2

2
= M

Mpl

Es

2
. (16)

3. HARMONIC OSCILLATOR EQUATION
AND QUANTIZATION RULES

Making the usual realization of the operator
P̂ 2

ξ

2MPl
= − h̄2

2MPl

d2

dξ 2 and applying it
to the wave-function ψ , we get the following linear harmonic oscillator equation[

− h̄2

2Mpl

d2

dξ 2
+ MPlω

2
0

2
ξ 2

]
ψ = M

Mpl

Es

2
ψ. (17)

In this point we make the transformation

Es = c4

2G
Rsup (18)
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y considering the form of Es given in (7) we obtain that Rsup = 2MG
c2 , being the

radius for the closed universe. Making the transformation ξ

�pl
= x, one can rewrite

(17) as

1

2

[
x2 − d2

dx2

]
ψ = 1

4

RsupEs

�plEpl
ψ. (19)

Using the creation-annihilation representation,

a = 1√
2

(
x + d

dx

)
, (20)

a† = 1√
2

(
x − d

dx

)
, (21)

with the usual algebra between them, [a, a†] = 1, we can rewrite Eq. (19) as

a†aψ = 1

2

[
x2 − d2

dx2

]
ψ − 1

2
ψ =

(
−1

2
+ 1

4

RsupEs

�plEpl

)
ψ = nψ,

n = 0, 1, 2, . . . . (22)

In this way, we have the following useful relations

RsupEs = r

(
n + 1

2

)
�plEpl

= 4

(
n + 1

2

)
h̄c, (23)

E2
s = 2

(
n + 1

2

)
E2

pl, (24)

Es

2
=

(
n + 1

2

)
h̄ω0. (25)

One can see that when n is bigger, we find

Rsup

�pl
= 2

√
2n + 1. (26)

in sense that, when n → ∞, Rsup coincide with the maximum expansion in the
scale factor R.

Let us write the Eq. (19) in the following form

d2ψ

dx2
+ (

α2
n − x2

)
ψ = 0, (27)
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where αn is parameter associated with the energy of the nth eigenstate

α2
n = 1

2

RsupEs

�plEpl
= 2

(
n + 1

2

)
, thus, αn = Es

Epl
, (28)

and the quantum solution is similar to the harmonic oscillator case

ψn(x) =
(

1√
πn!2n

) 1
2

Hn(x)e− 1
2 x2

, (29)

with Hn(x) the Hermite polynomials (where an approximation is made on the
boundary conditions, see below).

Analyzing the quantum solution (29) in the variable x = ξ

�pl
= 1

�pl
(R − MG

c2 ),
the classical allowed region is the one in which

−Rsup

2�pl
≤ x ≤ Rsup

2�pl
, (30)

and using (26), the coordinate x have the following range (−∞,∞) when n → ∞.
For this range in the variable x, the system is really the linear harmonic oscillator
with all its properties, i.e, we are considering the boundary conditions

R = 0 → ψ

(
x = −Rsup

2�pl
∼ −

√
2n ∼ −∞

)
= 0,

R = Rmax = Rs → ψ

(
x = Rsup

2�pl
∼

√
2n ∼ ∞

)
= 0, (31)

it is say, that −√
2n corresponds to big bang and

√
2n to the maximum expansion

of the universe, for n → ∞. Also, when ξ = 0, (see Eq. (14)), R = MG
c2 , one half

of the Rsup radius, the wave function is not zero, it is constant, for few values in
the parameter n. This result differs considerably with the Mäkelä’s paper (Mäkelä,
1996), because their wave function does not satisfy the usual boundary conditions
of the linear oscillator.

4. THE DISCRETE MASS SPECTRUM

Now, it is clear that the system, even in its lowest energy state n = 0, has a
finite, minimal energy. Equation (23) implies the following quantization mass rule

Mn = √
2n + 1Mpl. (32)

In this point, we introduce the condition on the Mn parameter when n → ∞,
this parameter must be the classical mass parameter Msup, for the closed universe,
filled with dust matter, in the maximum expansion.

On the other hand, the Eq. (24) is the equivalent relation of (3). In this
way, the universe of this type has a quantized mass of the order of the Planck
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mass Mpl = 2, 18 × 10−8 Kg. These results are similar to those obtained by other
methods in the black hole scenario (Kastrup, 1996, 1997; Louko-Mäkelä, 1996;
Mäkelä, 1996, 1997; Rosen, 1993).

The difference in mass between any two consecutive eigenvalues is given by

�Mn+1 ≡ Mn+1 − Mn =
[√

1 + 2

2n + 1
− 1

]
Mn n finite (33)

= 0 n → ∞,

the result when n → ∞ is in agreement with the correspondence principle.
If one goes over from mass to energy units one finds the following for the

ground state energy M0c
2 = 1, 22 × 1028 eV, and for the excitation to the next

state, the energy required will be (M1 − M0)c2 = 0, 9 × 1028 eV.
In general, using the Eq. (33), we have for any two neighbourhoods states

�Mn+1c
2 =

[√
1 + 2

2n + 1
− 1

]
Mnc

2 (34)

On the other hand, we can see that Eq. (23) remains invariant under the dual
symmetries,

Es → c4

2G
Rs, Rsup → 2G

c4
Es, (35)

in analogy with the case of magnetic and electric charges, found by Montonen and
Olive (1997).

If we associate an area parameter A = 4πR2
sup to the system, it has corrections

depending on the nth eigenstate (see Eq. (2)),

A = 2π

[
R2

sup +
(

2G

c4

)2

Es
2

]
= 32π

(
n + 1

2

)
�2

pl. (36)

The “area of the closed universe” can take only discrete values, such that, the
quanta of the area is in the same order of magnitude as the Planck area. It is easy
to check that this parameter is invariant under the transformation (35) and looks
like as Eq. (2).

5. CONCLUSIONS

In this paper using the canonical quantization, a time-independent
Schrödinger equation for the closed FRW cosmological model, given us inter-
esting results, by instants, the area of the ground state (n = 0) is proportional to
�2

pl, and the higher state corresponds at classical one (see Eqs. (26, 36)) with the



Mass Parameter Quantization in the FRW Cosmological Model 561

corresponding change in the mass parameter, in agreement with the correspon-
dence principle.

This toy model system looks like a quantum linear harmonic oscillator,
and using the creation-annihilation representation we found interesting relations
between the quantities Rsup, Es, Epl and �pl, (see (23,24,25)), in terms of the
discrete parameter n. With these relations, we obtained the discrete mass spectrum
for this type of Planck scale closed universe (32). When the eigenvalue n tends at
infinite, the parameters that depends of it, by the correspondence principle, will
correspond to classical ones. We have the hope that in a more fundamental energy
level exist an exact symmetry for all parameter for this toy model, for this reason
the supersymmetric generalization of our approach is outlined.
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